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The kinetics of the penetration of a viscous liquid inside a heated porous body 
under conditions of nonideal heat transfer into the liquid is investigated. 

The impregnation of a heated filamentary filler drawn through a chamber filled with a 
highly viscous liquid is an important process in the manufacture of certain composition 
materials. As a result of the contact with the filler, the liquid surrounding it is heated 
up and its viscosity decreases considerably, which facilitates the penetration of the liquid 
inside the filler due to the action of the pressure drop p" -- p' (Fig. i). A mathematical 
description of this process requires the solution of an extremely nonlinear problem on com- 
bined heat transfer and filtering. This problem has been investigated in [i] in the limiting 
case of ideally rapid heat and liquid transfer into the neighborhood of the transported fil- 
ler (achieved, e.g., due to intense mixing of the liquid), when the temperature of the liquid 
can be regarded as uniform and equal to T" and only the processes inside the filler filled 
with liquid (region III in Fig. i) need tO be considered. It turned out, in particular, 
that in this case the length L x which is impregnated does not depend on the thermal charac- 
teristics of the materials. 

In reality no particular measures are usually taken to ensure that mixing of the liquid 
occurs, and natural mixing of the liquid due to convection is difficult because of its high 
viscosity. In this case the temperature on the boundary y = 0 of the filler differs from T" 
and the rate of the impregnation process may depend to a considerable extent on the thermal 
conductivity in the pure liquid (region II in Fig. i). Obviously, any additional "resis- 
tance" to heat transfer from the filler to the surrounding liquid must lead to an increase 
in the mean temperature inside region III and to a corresponding reduction in the mean vis- 
cosity of the filtering liquid, and, consequently, to an acceleration of the impregnation 
process. 

Strictly speaking, heat transfer into the filler, whose pores are filled with gas 
(region I in Fig. i) may also affect the filtering of the liquid. However, its effect, 
although it may, of course, lead to some change in the form of the impregnation front Y(x), 
is not very important on the whole, since this process, which leads to some redistribution 
of the local heat fluxes, does not change the overall convective flow of heat in the region 
x~ 0, transferred by the filler, heated to a high temperature T'. Hence, to a first approx- 
imation we can assume, as in [i], that the temperature at y=Y(x) is equal to T' > T". 

For simplicity, we will consider the plane problem of the impregnation of a single 
strip of filler, using the same assumptions regarding the small relaxation time of the inter- 
phase heat and momentum transfer in region III, as in [i]. Then, using the results of [i], 
we will write the following approximate equation of convective heat transfer in region III: 

OT aT azT 
u Ox + •  . . . .  a , O ~ y ~ Y ( x ) ,  (1)  

oy oy 2 

where . . . .  
~v poCo 

a =  ; ~----- ' (2)  epoCo + (1 - -  e) plot epoC o + (1 - -  e) plcx 

w h i l e  v ( x )  i s  t h e  c o m p o n e n t  of  t h e  l i q u i d  f i l t e r i n g  v e l o c i t y  i n  t h e  y d i r e c t i o n .  I n  t h i s  
case we have the following relations [i]: 
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Fig. i. Sketch illustrating the process investigated: 
region I) filler with pores filled with gas; II) pure 
liquid in which the thermal boundary layer is formed; 
and III) filler with pores filled with liquid. 

Fig. 2. Dependence of the parameter t and the coeffi- 
cient of the reduction in the impregnation length y on 
to when 8 =I. 

Y(x) 
d r  (X) ' V (x) 

, = ~ (T)  d y ,  
v (X) = eu d x  , Po = P~ - -  P' + Pe cz 

o 

where T can be regarded as function of x and y. 

(3) 

The temperature in region II must also be found by solving the convective heat transfer 
equation. Since the Prandtl number is usually much greater than unity in liquids, for actual 
processes when the velocity of motion of the filler u is not small, we need only investi- 
gate this equation for large Pecl~t numberS. In this case, since the Prandtl number is high, 
we can assume that the thermal boundary layer is "submerged" in the dynamic boundary layer, 
i.e., we can approximate the components of the velocity of the liquid in the x and y direc- 
tions by the quantities u and v(x), respectively, in the thermal boundary layer at the sur- 
face of the filler. Hence, in region II we have the following equation [2]: 

u 0,, + v ( x )  &r b Oz~ , y < O ,  (4)  
Ox Oy Oy 2 

where b = X/poCo is the thermal diffusivity of the liquid. 

The boundary conditions for Eqs. (i) and (4) have the form 

T = T ' ,  y = Y (x); "~--+ T", y - + - -  oo, 

" (5)  
OT 0"~ 

T = "c, )~u 0--7 = L Oy y = O .  

The unknown boundary Y(x) of the region in which T is defined and the coefficient of v(x) 
in (i) and (4) depend nonlinearly on the required temperature field and are formally defined 
by relations (3). 

The results obtained in [i] suggest that in this case it is natural to seek a self- 
similar solution of the problem. The introduction of the self-similar variables h and ~ in 
accordance with the definitions 

a =  \ 2a ] r  ' n =  \ 2b j , (6) 

and also the functions 

(7)  

in a form which satisfies the first relation in (3), reduces the problem to the form 

d2T : dT 
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The parameter H in (7) and 
in [i], from the equation 

d~l 2 = • H--~ - ~ - ,  ~1<0, 

T = T', h = H; ~--,- T", ~l--+-- oo, 

T = %  dTdh = ( # )  '/2 --,drl .h=~=O" 

(8), considered here as a constant quantity, can be found, as 

H 

eaH S Po = - -  ~ (T) dh, 
O~ 

0 

which  f o l l o w s  from t h e  second  r e l a t i o n  in  (3) and t he  c l o s i n g  p r o b l e m .  

The solution of problem (8) can be represented in the form 

h 

0 

0 

where the constants of integration are 

C = (T' -- T") [I1 (~, H) + I2 (• ~,y/~,, H)I-~, 

B = T ~ - -  Cli (• H),  

H 

tz nHt ) dt, I1(• H) = ~ exp ( - - - ~ -  + 

0 

--__)1/'2i exp[ ~ (• ~--~v)I/2H/] dr. 

0 

I~(• zdx, H)= ( zl ~, 

All the integrals in (ii) can be expressed in terms of known functions using tabulated 
integrals [3]. 

The case of slow impregnation is of particular interest. 

h<~H~l ,  I1(~ , H) mH. 

We then have from (i0) and (ii) 

T,~, T ' - - ( T ' - -  T") - -  
H--l* 

H, 

where we have introduced an effective value H, of the parameter H: 

(8) 

(9) 

(io) 

(ii) 

This occurs (see [i]) when 

(12) 

(13) 

H, = H + I2 (• Xu/%, H) = H + Ho exp (~z) eric (f3), 

13= z H, H o =  , e r i c ( x ) = -  
2• 

2; 
V E  e t' at. 

g 

B << 1 and we can use the 

(14) 

If %y does not exceed some X, then bearing (12) in mind, 
representation for the function in (14) when 8§ i.e., 

H, ~ H + Ho. (15) 

The case of an ideally heat conducting liquid considered in [i] corresponds to passage 
to the limit %y/%§ H,§ In general, obviously H,>H, so that the temperature inside 
the filler exceeds the value calculated in [i], which facilitates, as already mentioned, 
the penetration of the liquid into the filler. In particular, on the surface of the filler 

Ts,~, T" + (T ' - -  T" i H~ > T". (16) 
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The second limiting case, the opposite of that investigated in [i], occurs when %y/l >> 
H a. This corresponds to the situation when the thermal conductivity of the filler material 
is of the same order of magnitude or greater than the thermal conductivity of the liquid. 
In this important practical case we can assume that 

H,  ~ H o ,  T =: T' = const, (17)  

which corresponds to filtering of a liquid at constant temperature, i.e., when the viscosity 
is independent of the coordinates. 

The solution obtained above for the temperature field inside the filler is similar to 
the solution obtained in [i] if we replace the temperature T" of the liquid in the latter 
by the higher temperature T s on the filler surface. Using further the different functional 
dependence of the viscosity of the liquid on the temperature we can evaluate the integral 
in (9) and determine H, after which it is easy to obtain the fundamental quantity character- 
izing the process from the practical point of view, viz., the length L x subjected to impreg- 
nation. 

We will consider the same versions of the approximation of the function ~ (T) as in [i]. 
Suppose 

~ ( T ) ~  ~o 1 . (18) 
To 

Here we obtain the equation for H in the form 

The approximation 

leads to the equation 

i - -  T--T"_ Ho + H/2 .~ Ha= ~po 
To H, ] eaFo 

(19) 

T--T") 
[~ (T) ~ Fo exp To (20) 

HH,.~exp( T'--T" H~ [ t T o  ~,]7 --exp( 

Finally, the functional relation 

T'--T")] o:po T'--T" .-  (21) 
To sago To 

To 
F (T) ~ ~0 exp -T-  

corresponds to the following equation for H: 

HH,F (H) -- apo 
8aFo 

T' To T~ 
F(H)=- exp 

To T' To 

where Ts depends on H and is defined in (16). 
reduce to those given in [i]. 

- - ,  E~ (x) = - / -  dr, 

Ts 

When H+ 0 t h e  e q u a t i o n s  o b t a i n e d  above  

Having the dependence of H on the process parameters, the impregnation length L x can 
be found from the relation obtained from (7): 

(22) 

(23) 

L~ = 7~a (24) 

It is convenient to describe the effect of the external heat exchange on the rate of 
impregnation using the coefficient 7 of the reduction in the impregnation length, which is 
the ratio of the value of Lx, calculated from (24), to the similar quantity obtained in the 
limit as Ho § (The latter quantity is found independently in [i].) For example, if we 
approximate the temperature dependence of the viscosity using (20), we have 

? 1/t% (25) 

where t is the root of the equation 
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( t (t to) exp \ t + to /  (26) 

which depends on the  parameters  

6 = - - - ,  t o=  (1--e-~) 1/2 . (27) 
To. ~ 2• ~ 6~po ] 

The first of these parameters represents the degree of reduction of the viscosity as the 
temperature of the liquid increases from T" to T', and the second represents the relative 
effect of the slowing down of the heat-transfer process from the filler to the surrounding 
liquid on the acceleration of the impregnation. 

Curves of t and y as a function of to for 6 = 1 (which corresponds to the situation 
when ~(T') is e times less than ~(T")) are shown in Fig. 2. They convincingly confirm the 
fact that a deterioration in the heat exchange in the pure liquid can lead to a considerable 
reduction in the impregnated length, i.e. in practice, to an intensification of the corre- 
sponding process. In this case the values of L x corresponding to an ideally heat conducting 
liquid can be regarded as the maximum corresponding to the most unsuitable conditions. 

NOTATION 

T, T, temperature; p, pressure; u, pulling velocity; Y(x), thickness of the boundary 
layer; x, y, longitudinal and transverse coordinate; v, filtering velocity of the liquid; 
a, • coefficients introduced in (2); po, effective pressure drop taking the capillary pres- 
sure Pc into account; u, penetrability of the filler; ~(t), viscosity of the liquid; ~o, 
characteristic value of the viscosity occurring in the approximation relations for the vis- 
cosity; b= ~/poCo, thermal diffusivity of the liquid; 0o, Pl, density of the liquid and 
filler material; h, n, self-similar variables introduced in (6); Co, specific heat capacity 
of the liquid; %, %y, thermal conductivities; H, parameter defined from Eq. (9); H,~ effec- 
tive value of the parameter H; s, porosity of the filler; B, C, constants of integration 
defined in (ii); I~, I2, functions defined in (ii); B, Ho, quantities defined in (14)$ Ts, 
temperature of the filler surface; Lx, Ly, characteristic dimensions; To, a quantity occur- 
ring in the approximation relations for the viscosity; F, a function in (23); y, a coeffi- 
cient defined in (25); t, root of the equation in (26)~ 5, to, quantities defined in (27); 
', parameters, relating to the region I; and ", parameters relating to region II. 
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